SK100WT

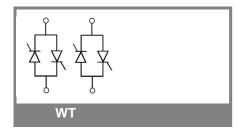
Antiparallel Thyristor

SK100WT

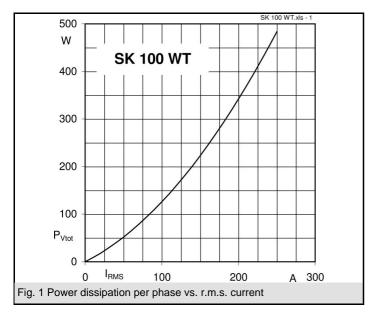
Module

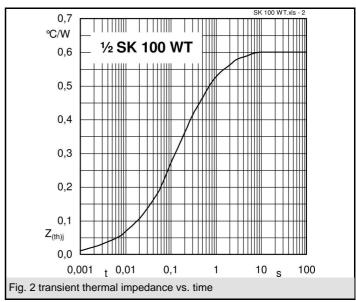
Preliminary Data

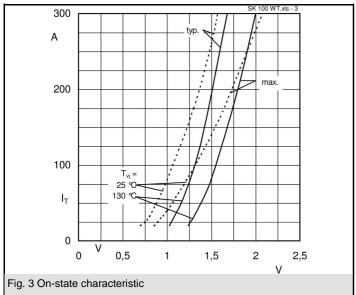
Features

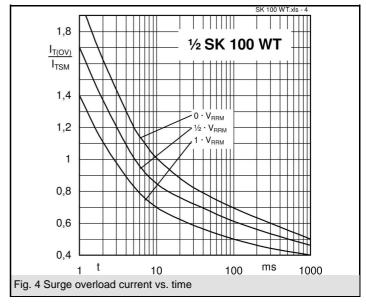

- Compact Design
- · One screw mounting
- Heat transfer and isolation trough direct copper bonded aluminium oxide ceramic (DCB)
- · Glass passived thyristor chips
- Up to 1600V reverse voltage
- UL recognized, file no. E 63 532

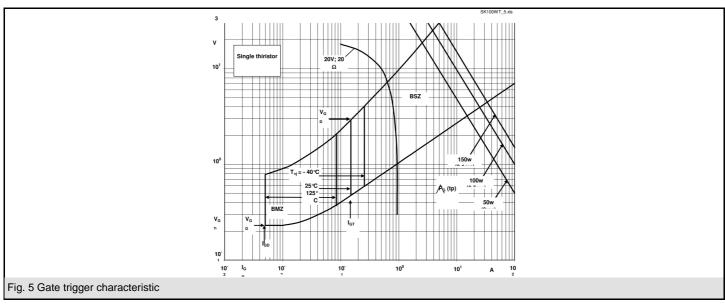
Typical Applications*

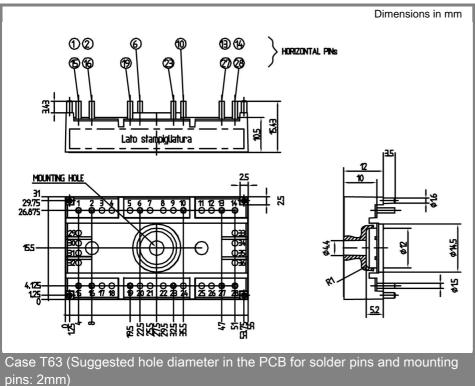

- Soft starters
- Light control (studios, theaters...)
- Temperature control

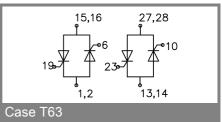

V _{RSM} V	V _{RRM} , V _{DRM} V	I _{RMS} = 101 A (full conduction) (T _s = 85 °C)
900	800	SK 100 WT 08
1300	1200	Sk 100 WT 12
1700	1600	SK 100 WT 16


Symbol	Conditions	Values	Units
I _{RMS}	W1C ; sin. 180° ; T _s =100°C	71	Α
	W1C ; sin. 180° ; T _s =85°C	101	Α
I _{TSM}	T _{vi} = 25 °C ; 10 ms	1500	Α
	T _{vi} = 125 °C ; 10 ms	1350	Α
i²t	T _{vj} = 25 °C ; 8,3 10 ms	11250	A²s
	T _{vj} = 125 °C ; 8,3 10 ms	9100	A²s
V _T	$T_{v_i} = 25 ^{\circ}\text{C}, I_T = 200 \text{A}$	max. 1,8	V
$V_{T(TO)}$	T _{vi} = 125 °C	max. 0,9	V
r _T	T _{vi} = 125 °C	max. 4,5	mΩ
$I_{DD};I_{RD}$	$T_{vj} = 25 ^{\circ}\text{C}, V_{RD} = V_{RRM}$	max. 1	mA
	T_{vj} = 125 °C, $V_{RD} = V_{RRM}$	max. 20	mA
t _{gd}	T_{vj} = 25 °C, I_{G} = 1 A; di_{G}/dt = 1 A/ μ s	1	μs
t _{gr}	$V_D = 0.67 *V_{DRM}$	2	μs
(dv/dt) _{cr}	T _{vi} = 125 °C	1000	V/µs
(di/dt) _{cr}	T _{vi} = 125 °C; f= 50 60 Hz	50	A/µs
t _q	T _{vi} = 125 °C; typ.	80	μs
I _H	T _{vi} = 25 °C; typ. / max.	100 / 200	mA
I_L	$T_{vj} = 25 ^{\circ}\text{C}; R_{G} = 33 \Omega; \text{typ. / max.}$	200 / 500	mA
V _{GT}	$T_{vi} = 25 ^{\circ}\text{C}; \text{d.c.}$	min. 2	V
I _{GT}	$T_{vi} = 25 ^{\circ}\text{C}; \text{d.c.}$	min. 100	mA
V_{GD}	T_{vj}^{3} = 125 °C; d.c.	max. 0,25	V
I_{GD}	T _{vj} = 125 °C; d.c.	max. 5	mA
$R_{th(j-s)}$	cont. per thyristor	0,6	K/W
	sin 180° per thyristor	0,63	K/W
$R_{th(j-s)}$	cont. per W1C	0,3	K/W
	sin 180° per W1C	0,315	K/W
T_{vj}		-40 +12 5	°C
T _{stg}		-40 + 125	°C
T _{solder}	terminals, 10 s	260	°C
V _{isol}	a. c. 50 Hz; r.m.s.; 1 s / 1 min.	3000 / 2500	V~
M _s		2,5	Nm
M_t			Nm
а			m/s²
m		30	g
Case	SEMITOP® 3	T 63	




SK100WT





^{*} The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.