
SK 70 WT

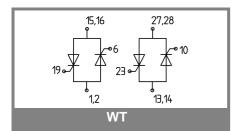
SEMITOP® 3

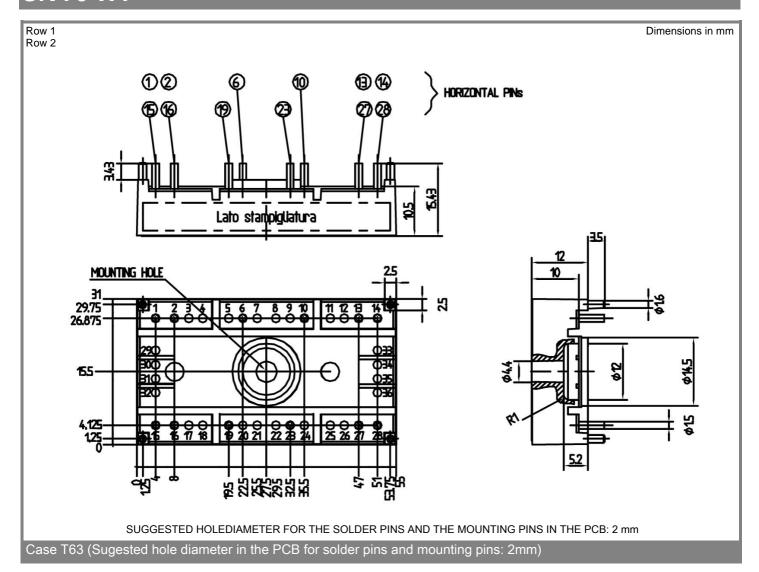
Thyristor

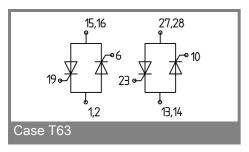
SK 70 WT

Target Data

Features


- Compact Design
- · One screw mounting
- Heat transfer and isolation trough direct copper bonded aluminium oxide ceramic (DCB)
- Glass passived thyristor chips
- Up to 1600V reverse voltage
- UL recognized, file no. E 63 532


Typical Applications


- Soft starters
- Light control (studios, theaters...)
- Temperature control

V _{RSM} V	V _{RRM} , V _{DRM} V	I _{RMS} = 72 A (T _s = 85 °C)
900	800	SK 70 WT 08
1300	1200	SK 70 WT 12
1700	1600	SK 70 WT 16

Characteristics					
Symbol	Conditions	Values	Units		
I _D			Α		
I_{TAV}/I_{FAV}			Α		
I _{RMS}	per phase		А		
I _{TSM} /I _{FSM}	T _{vi} = 25 (125) °C; 10 ms	1000 (900)	Α		
l²t	T _{vj} = 25 (125) °C; 8,3 10 ms	5000 (4000)	A²s		
T _{stg}		-40 +125	°C		
T _{solder}	terminals, 10 s	260	°C		
Thyristor	•				
(dv/dt) _{cr}	T _{vi} = 125 °C	1000	V/µs		
(di/dt) _{cr}	$T_{vi} = 125 ^{\circ}\text{C}; f = f = 5060 \text{Hz}$	50	A/µs		
t _q	$T_{vi} = 125 ^{\circ}\text{C}$; typ.	80	μs		
I _H	T _{vi} = 25 °C; typ. / max.	100 / 200	mA		
IL	$T_{vi} = 25 ^{\circ}\text{C}; R_{G} = 33 \Omega; \text{typ. / max.}$	200 / 400	mA		
V _T	$T_{vi} = 25 ^{\circ}\text{C}; (I_T = 120 \text{A}); \text{max}.$	1,8	V		
V _{T(TO)}	T _{vi} = 125 °C	max. 1	V		
r _T	$T_{vi}^{-3} = 125 ^{\circ}\text{C}$	max. 6	mΩ		
I _{DD} ; I _{RD}	T_{vj}^{-1} = 125 °C; $V_{DD} = V_{DRM}$; $V_{RD} = V_{RRM}$	max. 15	mA		
R _{th(j-s)}	per thyristor	0,8	K/W		
T _{vi}		- 40 + 125	°C		
V _{GT}	$T_{vi} = 25 ^{\circ}\text{C}; \text{d.c.}$	2	V		
I _{GT}	$T_{vi}^{'j} = 25 ^{\circ}\text{C}; \text{d.c.}$	100	mA		
V _{GD}	T_{vi}^{yj} = 125 °C; d.c.	0,25	V		
I _{GD}	T _{vi} = 125 °C; d.c.	5	mA		
Diode	1	1			
V_{F}	$T_{vi} = {^{\circ}C}; (I_F = A); max.$		V		
V _(TO)	$T_{vi}^{yj} = {^{\circ}C}$		V		
r _T	$T_{vi}^{'j} = {}^{\circ}C$		mΩ		
I _{RD}	$T_{vj} = {^{\circ}C}; V_{RD} = V_{RRM}$		mA		
R _{th(j-s)}	,		K/W		
T _{vi}			°C		
Mechanic	al data				
V _{isol}	a. c. 50 Hz; r.m.s.; 1 s / 1 min	2500 (3000)	V		
M ₁	mounting torque	2,5	Nm		
w	- ,	30	g		
Case	SEMITOP® 3	T 63			

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.